Integrating Iterative Learning Estimation with Optimal Control for Batch Productivity Enhancement

نویسندگان

  • Anish Gupta
  • Ravindra D. Gudi
چکیده

Optimal control has wide applications for the control of batch and semi-batch processes to develop an optimum control input policy by extremizing a performance measure. The deployment of optimal control relies heavily on the accuracy of the process models being used for computation of the optimal profile. Often, the process models do not replicate the plants due to various shortcomings such as assumptions made during model formulations, poor first principles knowledge and limited range of experimental data due to short process development cycles. Moreover, scale-up of the processes from lab to manufacturing scale renders the developed models obsolete. The estimated model parameters can significantly differ from their nominal values which calls for the development of a strategy that updates process models so as to achieve an improved and tight control of batch processes. In this paper, we propose a novel methodology based on iterative learning to gradually update models using on-line measurement data at the end of each successive batch run by minimizing the error between plant and model data. In the proposed methodology, we further integrate Iterative Learning Estimation (ILE) with optimal control to update the optimal control input profile with the advent of measurement after each successive batch run. An important aspect of this integration is to ensure that model updates between batch runs generate feasible optimal control trajectories. Simulations are performed for the temperature control of a batch reactor system to validate the proposed methodology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iterative learning controller synthesis using FIR models for batch processes

−Adaptive iterative learning control based on the measured input-output data is proposed to solve the traditional iterative learning control problem in the batch process. It produces a control law with self-tuning capability by combining a batch-to-batch model estimation procedure with the control design technique. To build the unknown batch operation system, the finite impulse response (FIR) m...

متن کامل

Perfect Tracking of Supercavitating Non-minimum Phase Vehicles Using a New Robust and Adaptive Parameter-optimal Iterative Learning Control

In this manuscript, a new method is proposed to provide a perfect tracking of the supercavitation system based on a new two-state model. The tracking of the pitch rate and angle of attack for fin and cavitator input is of the aim. The pitch rate of the supercavitation with respect to fin angle is found as a non-minimum phase behavior. This effect reduces the speed of command pitch rate. Control...

متن کامل

2d Model Predictive Iterative Learning Control Schemes for Batch Processes

Iterative learning control (ILC) system is modelled and treated as a 2D system in this paper. Based on single-batch and multi-batch cost functions, 2D model predictive iterative learning control (2D-MPILC) schemes are developed in the framework of model predictive control (MPC) for the 2D system. Structure analysis shows that the resulted 2D-MPILC laws are causal and they implicitly combine a t...

متن کامل

Iterative learning model predictive control for multi-phase batch processes

Multi-phase batch process is common in industry, such as injection molding process, fermentation and sequencing batch reactor; however, it is still an open problem to control and analyze this kind of processes. Motivated by injection molding processes, the multi-phase batch process in each cycle is formulated as a switched system with internally forced switching instant. Controlling multi-phase...

متن کامل

Batch-to-Batch Iterative Learning Control of a Fed-batch Fermentation Process Using Incrementally Updated Models

Batch-to-batch iterative learning control of a fed-batch fermentation process using batchwise linearised models identified from process operation data is presented in this paper. Due to model-plant mismatches and the present of unknown disturbances, off-line calculated control policy may not be optimal when implemented to the real process. The repetitive nature of batch process allows informati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015